LoadBalancing

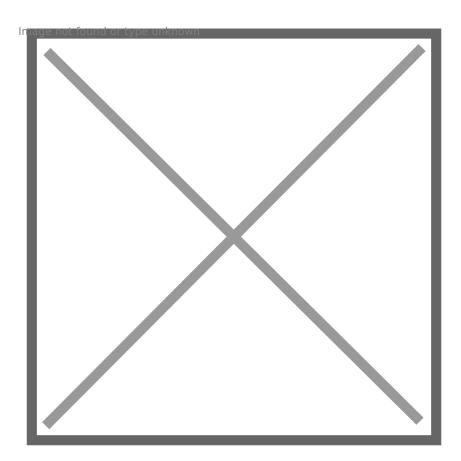
• Installer Load Balancing et le configurer

Installer Load Balancing et le configurer

Le Load Balancing c'est quoi?

Le **load balancing** (ou équilibrage de charge) répartit le trafic entre plusieurs serveurs pour garantir disponibilité, performance et fiabilité.

Un **load balancer** agit comme intermédiaire : il reçoit les requêtes des utilisateurs et les redirige vers les serveurs disponibles en fonction de règles (par exemple, le moins chargé ou à tour de rôle).

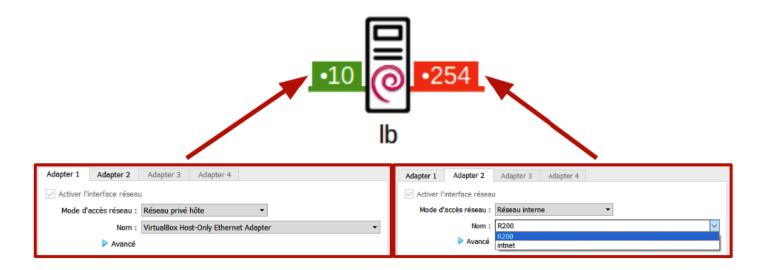

Cela permet de :

- Éviter les surcharges des serveurs.
- Assurer la continuité du service, même en cas de panne.
- Optimiser les performances en répartissant le travail équitablement.

On peut le faire via des solutions matérielles, logicielles ou cloud, comme HAProxy, Nginx, ou AWS Elastic Load Balancer.

Installation du LoadBalancing sur notre réseau

Dans notre cas nous allons suivre ce schema


Pour commencer nous allons crée un serveur Maitre nomée "LoadBalancing "

On fais un update des packets et nous installations ipvsadm

```
apt update
apt install ipvsadm
```

Puis on ajouter sur virtualbox ou autre virtualiseur 2 interfaces réseau

- Public (Réseau privé hôte)
- Privée (R200)

En suite nous accédons a la configuration network du serveur LoadBalancing afin de configuré le réseau

nano /etc/network/interfaces

Et on applique le réseau ci dessous

```
# This file describes the network interfaces available on your system
# and how to activate them. For more information, see interfaces(5).

source /etc/network/interfaces.d/*

# The loopback network interface
auto lo
iface lo inet loopback

# The primary network interface
allow-hotplug enp0s3
iface enp0s3 inet static

address 192.168.56.10/24
gateway 192.168.56.254

# The 2nd network interfaces enp0s3

allow-hotplug enp0s8
iface enp0s8 inet static
-address 192.168.200.254/24
```

Après nous allons configurer ipvsadm

Nous allons dans le fichier systctl.conf

nano /etc/sysctl.conf

```
/etc/sysctl.conf – Configuration file for setting system variables
 See /etc/sysctl.d/ for additional system variables.
 See sysctl.conf (5) for information.
#kernel.domainname = example.com
# Uncomment the following to stop low–level messages on console
#kernel.printk = 3 4 1 3
# Functions previously found in netbase
# Uncomment the next two lines to enable Spoof protection (reverse–path filter)
# Turn on Source Address Verification in all interfaces to
# prevent some spoofing attacks
#net.ipv4.conf.default.rp_filter=1
#net.ipv4.conf.all.rp_filter=1
# Uncomment the next line to enable TCP/IP SYN cookies
¥ See http://lwn.net/Articles/277146/
# Note: This may impact IPv6 TCP sessions too
#net.ipv4.tcp_syncookies=1
# Uncomment the next line to enable packet forwarding for IPv4
net.ipv4.ip_forward=1
```

Et on vérifie que l'ip forward est bien activé cela doit vous afficher 1 (si cela ne s'afficher pas relancé la VM)

```
cat /proc/sys/net/ipv4/ip_forward
```

Maintenant nous allons dans le fichiers ipvsadm et nous mettons la configuration ci dessous

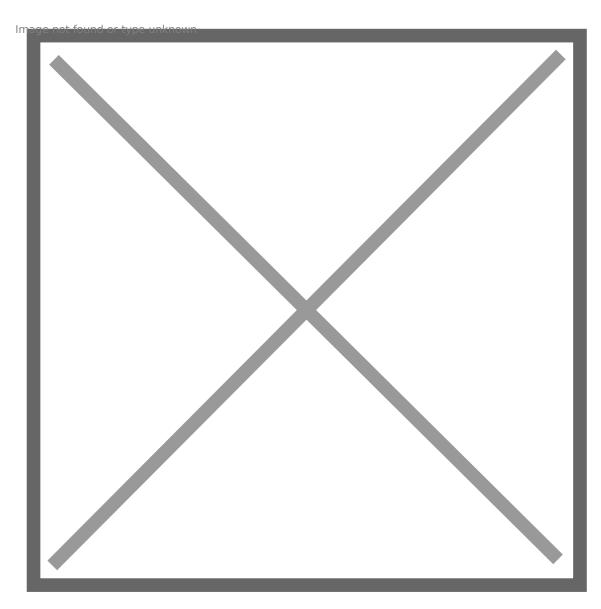
nano /etc/default/ipvsadm

```
# ipvsadm
# if you want to start ipvsadm on boot set this to true
AUTO="true"

# daemon method (none|master|backup)
DAEMON="master"

# use interface (eth0,eth1...)
IFACE="enp0s3"

# syncid to use
# (0 means no filtering of syncids happen, that is the default)
# SYNCID="0"
```


NB:

- Ligne 1 : Chargement de l'application et des règles au démarrage
- Ligne 2 : " Maitre " par défaut puisqu'il est le seul load balancer
- Ligne 3 : C'est par cette interface qu'arrivent les requêtes vers la grappe de serveurs Web

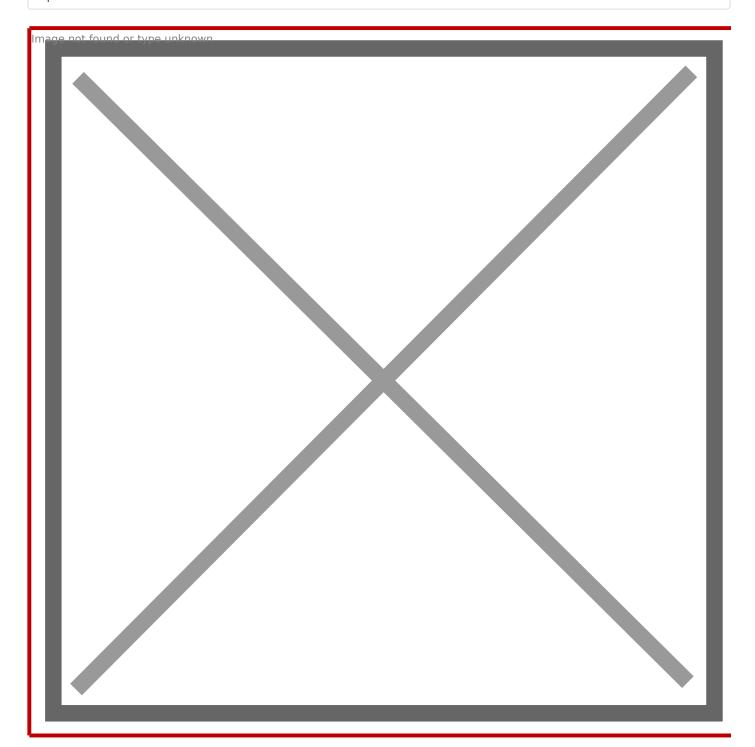
Puis nous allons dans le fichiers rules afin de mettre nos serveurs web

nano /etc/ipvsadm.rules

et nous mettons la configuration suivante :

NB Définition du service :

-A ajoute un service, les éléments imporatns sont définis après. à savoir Protocol +
 @IP:PORT + Algorithme


- -t Protocol TCP
- -s Algorithme de Répartition Round Robin

NB Membres du clusters :


- -a ajoute un noeud à un service
- -t:IP Service concerné
- -r:IP Adresse et port du noeud participant au cluster


On effectue la commande suivante pour vérifier que tout est correct

ipvsadm -In

On se connecte au serveur lb 192.168.56.10 est nous devons tombé sur la page Web1 & Web2 si on refresh constament

Maintenant nous allons ajouter un Web3 a notre serveur

Pour cela on clone 1 des serveur Web on change l'ip de ce serveur avec la même interfaces réseau puis le text de la page apache

```
# This file describes the network interfaces available on your system
# and how to activate them. For more information, see interfaces(5).

source /etc/network/interfaces.d/*

# The loopback network interface
auto lo
iface lo inet loopback

# The primary network interface
allow—hotplug enp0s3
iface enp0s3 inet static

address 192.168.200.13/24
gateway 192.168.200.254
```

Maintenant on va dans le fichiers rules sur le serveur **LoadBalancing** et on rajoute simplement le 3eme serveur

nano /etc/ipvsadm.rules

```
# Définition du service
ipvsadm –A –t 192.168.56.10:80 –s rr
# Membres du clusters
ipvsadm –a –t 192.168.56.10:80 –r 192.168.200.11:80 –m
ipvsadm –a –t 192.168.56.10:80 –r 192.168.200.12:80 –m
ipvsadm –a –t 192.168.56.10:80 –r 192.168.200.13:80 –m
```

Après avoir ajouté le 3éme serveur on reboot le serveur lb pour être sur et on vérifie qu'on tombe également sur la page apache de Web3

